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The general qualitative portrait of the motion of a heavy rigid body around a 
fixed point was ascertained in [l - 41 under Kowalewska’s assumption in the 
Delone case. In this paper the motion of a rigid body is investigated under the 

assumption that the body is imparted a large angular velocity around an axis 
close to the major axis of the energy ellipsoid. The explicit dependencies of the 
Euler angles on time, obtained here, permit us to carry out sufficiently simply 
a similar analysis of the motion of Kowalewska’s gyroscope in the Delone case. 

1. As is known [l, 2, 51, the equations of motion of a heavy rigid body around a 
fixed point, under Kowalewska’s assumption 

A = B = 2C, J/o = Z” = 0, c = Mjir,,C-’ # 0 
2p’ = qr, 2g’ = - pP - cy”, r’ = cy’ 

r ’ = ry’ - qy’, 7” = P‘(” - q, r”t = cj’( - p;! (1.1) 

possess, under definite conditions, as was noted by Delone, the five algebraic integrals 

2~” + 2qz i_ r2 -= 2cy - 61’, 
y* + y’2 f y”2 _ 1, 

2py + 2qy’ + ry” =: 21 (1 2) 
p” - 92 + cy = 0, 2pq + cyr = 0 

(I’, 1 are arbitrary constants), and the general solution of these equations (1.1) can be 
expressed in elliptic time functions. 

Let us assume that at the initial instant the body’s principal inertial axis 0~ lies in 
the horizontal plane, the principal inertial axis Oz makes an angle 00, 0 < 6” <z n 1 2 
with the vertical (the case O,, ~= 0 will be treated below), and the projection of the an- 
gular velocity onto the axis 02 is a large quantity. Then 

1’” = Sill O”, yo’ :z- 0, 7/n” : co4, (1.3) 

while the last two relations in (1.2) are satisfied under the conditions 

po =- 0, q,? _: “yo (1.4) 

Assume that 
c >o, TO > 0, ‘lo > 0 (1.5) 

Here and below we have introduced the notation F, = P(6) for any function F(l) . By 
using from relations (1.2) the formulas p] 
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in which, by virtue of conditions (1.3) and (1.4), we need to set 

61’ = rO%, 21 = rOyOs, 61’ - 412 = r$ ‘y,,p (1.6) 

we have, on the basis of (1.5) and (1. ‘7). 

q = (-p” - 2 qo”ri’ p + c?,‘or~‘r)‘/z (1.9) 

By introducing the new variable u and the parameter 1 

?f7 - 4~” = r0 + Zpp-‘0, p = v/cro/r0 (ao=O) (1.10) 

from relations (1.6) (1.9), (1.10) and the first equation of system (1, l), we obtain 

p = - rofi (p + G)-’ Q, q = r0p (pa + 62)-l 1/G) 

r = r0 (r2 - G”) (/I? + &)-l (l.li) 

25’ = - ro JGF@, R (6) = - (~5~ - 2apas + ~5% - Zapsa - p4) 

a = yo”yoel (1.12) 

We determine the dependency of the variable o on time by Sretenskii’s method [6]. 
For this purpose we find the expansion of the roots ol, u2, u3, 04 of the equation R(a) = 
= 0 into series in the small parameter p : 

(Jl = - p2 + q3 + 0(p4), 02 = p2 + ap3 + Q (p4) (1.13) 

(Ja = - i + pa + O(P’), u4 = i + pa + O(cra) 

and we pass to the new variable v 

~~=(~I+Bz)+(~~-~~)co~~=J_L~cosY+~~~+O~~) 

v0 = v2n + pa + O(p2) 

(1.14) 

Substituting relations (1. la), (1.14) into Eq. (1.12) and integrating it, we have 

v = llzn + llLrof + 0 (p) (1.15) 

From formulas (1.2) (1.6), (1.11) (1.14) we obtain 

P = - I/% (~0s v + W + 0 W, q = JGTsinv +O(p2) 

r = r. + 0 (pl 

y = - y,(cos2v + 2l”“cosv), y’ = y,(sinZv + 2pasinv) 

Y 
If - - Yo” - 2pYy,cos~ + 0(P2) (1.16) 

2, For the analysis of the motion we introduce the Euler angles 6, q, % 

cosB=r”, 9,’ = (PT + PY’) (1 - P)-‘, cp’=r-**co.90 (24 

From the first formula in (2.1) and the last formula in (1.16) follows the expression for 
the nutation angle: 

e = 0, + 2ycosv + O(p2) (2.2) 
By substituting expressions (1.16) into the second formula of (2.1) which we rewrite, on 
the basis of relations (1.2). in the form q’ = - Cp(p2 + 92)-l, and integrating, we obtain 
a formula for the precession angle 

‘II, = q. + 2pyi1 sinv + p2ay@r2v + 0(p3) (2.3) 

We find the angle of natural rotation from the third relation in (2.1) 

9, = %n + rot + O(P) (2.4) 

To determine the motion of Kowalewska’s gyroscope in the Delone case with the aid 
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of formulas (2.2) - (2.4) we take, on a fixed unit sphere with center at a fixed point, 
a spherical rectangle formed by parallels distant from the mean parallel B0 by angles 
& 2~ and by meridians distant from the mean meridian (I& - I/&) by angles f 2pTi1. 

Then the trajectory of the axis 0~ on the unit sphere indicated is the ellipse 

(2.5) 

In describing this ellipse the gyroscope’s axis OZ executes, in the first approximation, 
a periodic motion with period T = 4n 1 ro, passing at the instants t, and tm 

2, = 2nnr;‘, t m = (2m + l)nr~‘(m,n = 0, f l,...) 

through the points of intersection of the mean parallel with the extreme meridians and 

of the mean meridian with the extreme parallels. As follows from formula (2.4) the 
natural rotation of the body differs but little from the uniform rotation with large angular 
velocity rO. 

3. Let us now consider the motion of the gyroscope for the condition 6,, = 0 from 
which, with due regard to formulas (1.3), (1.4) follow the relations 

p#J = qo = yo = yo’ = 0, yo” = 1, 61’ - 4P = 0 (3.1) 

Then, from formulas (1.5) - (1.7) we have 

q=-If -p (p + 2pr 1/F), r = ro vi - 4@ce1pa, IL1 = f/F/ ro (3.2) 

The minus sign before the first radical was chosen by virtue of the condition q. = 0 

and of the condition QO’ = - ~O”C < 0 obtained from the second equation of system 
(1.1) and relations (3.1) and (1.5). 

To determine the dependency of P on time we rewrite the first of the equations of 

system (1. l), using relations (3.2), in the form 

[f (Qf” (14 = - ‘/To& 

f(E) = (1 - 5*)(-Y - &I%) 

4 = 2p1c-‘Izp 

(Eo = 0) (3.3) 

and we pass, analogously to what we did above, to a new variable u 

E = 2@ (cos U - 1) (uo = 0) (3.4) 

Substituting relation (3.4) into Eq. (3.3) and integrating it, we obtain 

1L = &PO t + ow 

From formulas (3.2) - (3.4) and (1.2) we have 

p = - pt l/C (1 - cos u), q = - PI JG sin u, r = r0 + 0 @13) 

y = - /A12 (1 - 2cosu + cos 3u), y’ = - p 12(2sinu - sin2u) 

y” = 1 - 2n.14 (1 - cosu)2 + O(pP) (3.5) 

From the relations for the Euler angles 0, q, $, 

6 = 21”12(1 - cos u) + O@l”), II, - $0 = lIzrot 

q = l!~;t + l/got + O(p13) (3.6) 

obtained on the basis of formulas (2.1) and (3.5) it follows that the trajectory of the 
axis 0.z on a fixed sphere of unit radius is a cardioid [7] 
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0 = 2h(l - cos$,I) (A = PIa, $1 = la - 4%). 

In describing this cardioid the axis Oz executes, in the first approximation, a periodic 
motion of period T = 4~t f r 0. The natural rotation of the body, as follows from the last 

formula in (3.6). differs but little from the uniform rotation with large angular velocity 
=/a ro. 

The analysis presented allows us to observe, to a sufficient degree, the motion of 

Kowalewska’s gyroscope in the Delone case and to ascertain the dependency of this mo- 
tion on the design parameters of the gyroscope and on the initial conditions of the motion. 
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